Energy Storage Workshop

California Public Utility Commission

Energy Storage OIR

Victor Romero, P.E.

Director, Asset Management and Smart Grid Projects

SDG&E's Energy Storage Strategy

- Determine the resource mix over the next 10-15 years
 - Impact to local and territory-wide grid system
- Estimate the actual power and energy output of renewable resources
 - Impacts of intermittency and congestion, at various times, seasons, locations, weather conditions and states-of-readiness
- Investigate mitigation strategies for the intermittency
 - Storage, current generation, fast ramping generation, VAr injection
 - Case for why without mitigation reliability will suffer and how much
 - Cost of the alternatives (conventional peaker plants)
- Develop software/hardware requirements for systems that will manage load balancing in the face of increasing generation variability
- Compute business case for implementing mitigation strategies
 - High level requirements, cost, pros/cons, risks, dependencies
- Understand "true impact" of intermittent renewable resources
 - Installed and levelized cost perspective, \$/kW and \$/kWh

PV Issues - Intermittency

Top half of graph: one day of 1 second voltage readings at 12 kV transformer near a customer's 1 MW PV system Bottom half of graph: 10 minutes of 1 second data magnified from the one day data above

PV Intermittency Mitigation Based Upon Modeling with Smart Inverters

Blue = Without Mitigation Red = With Mitigation

With and without dynamic VAr device

With and without energy storage

With and without dynamic VAr device and storage:

Distribution Level Energy Storage

Community Energy Storage

- Address increasing PV penetration on the distribution system
- Voltage regulation, frequency regulation, power output fluctuations, voltage flicker, deferment of capacity
- Locate on circuits with high PV penetration
- Multi-year deployment

Substation Located

- Address centralized renewable generation sources
- Multiple circuits with high PV penetration
- Voltage and frequency regulation
- Off-peak energy storage

Initial Projects Integrating Storage

Microgrid Project – Borrego Springs

- Substation level 500 kW, 1500 kWh Lithium Ion systems
- Community Energy Storage three 25 kW, 50 kWh systems on circuits
- Residential Six 4.5 kW, 10.7 kWh at single family dwellings

Smart Grid – Initial AES Deployment

- 500 kW, 1500 kWh Lithium Ion ESS at substation
- Community Energy Storage three 25 kW, 50 kWh Lithium Ion systems
- Dynamic VAr device 2 MVA
 - One circuit affected by high penetration of PV

Substation Energy Storage

- One of several planned substation-scale ESS
- Solar Integration using 500 kW, 1500 kWh Lithium Ion
- Demonstrate 4 quadrant control
- Advance modes of operation and evaluate impacts / benefits

Microgrid - Substation Energy Storage

- 500 kW, 1500 kWh Lithium Ion ESS
- 4 Quadrant Power Conditioning System (PCS)
- Modes of Operation
 - Peak Shaving/Load Following
 - Renewable Smoothing
 - Support Islanding Operation

Community Energy Storage

- Lithium Ion 25 kW, 50 kWh
- Assess in the field performance at locations suited for ESS siting
- Demonstrate modes of operation and evaluate impacts and benefits

Microgrid - Community Energy Storage

- Three systems connected to distribution circuit
 - 25 kW, 50 kWh Lithium Ion
 - Operated independently and in aggregate
- Modes of Operation
 - Peak Shaving
 - Renewable Smoothing
 - Voltage Support

Below Grade Vault

Microgrid - Residential Energy Storage

- Six 4.5 kW,10.7 kWh Lithium Ion systems, Single Phase, Bi-directional
- Charge/discharge commands sent via Home Area Network (HAN)
- Support Demand Response Operation

AES Deployment History - Challenges

RFP Year	AES Type	Issues/Challenges
2010	SES - Flow Battery	Vendor unable to meet delivery requirementsNo contract granted
2011	SES - Lithium Ion	 PCS Container - A/C systems upgrade Communication between PCS & battery containers
	CES - Lithium Ion	 Moisture intrusion during Factory Acceptance Test Battery over discharge due to algorithm bug Communications challenges between inverter & onboard computer Siting difficult in the public right-of-way
	HES - Lithium Ion	 Delay due to UL-listing challenges – new category
2012	SES - Lithium Ion	
	CES - Lithium Ion	

AES Deployment - Benefits/Lessons Learned

RFP Year	AES Type	Outcome
2010	SES - Flow Battery	Curtailed deployment plansTechnology development incomplete
2011	SES - Lithium Ion	 Demonstrated multiple modes of operation Proven 4-quadrant operation Granular VAr dispatch (alternative to substation capacitors) Support islanding operation
2012	CES - Lithium Ion	 Scheduled charge/discharge Peak Shaving at distribution-transformer level Voltage support at secondary level Smooth fluctuations caused by rooftop PV systems
2012	HES - Lithium Ion	Charge/discharge based on scheduleSupport Demand Response operation

Thank You!

Victor Romero

Director
Asset Management & Smart Grid Projects